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Abstract

Coherent states on the m-sheeted complex plane are introduced and
properties like overcompleteness and resolution of the identity are studied.
They are eigenstates of the operators an+,an which create and annihilate
clusters of m-particles. Applications of this formalism in the study of
Hamiltonians that describe m-particle clustering are also considered.

1.  Intxoduction

Apart from the original (Glauber) coherent states which are associated
with the Weyl group, other types of coherent states associated with other
groups (e.g. SU(2), SU(1l,1) etc.) have also been studied. In a recent
publication [1] we extended these ideas in a different direction and
introduced coherent states on the m-sheeted covering group of SU(1,1). From
a physical point of view it can be used for the description of m-particle

clustering. Here we extend the Glauter coherent states into coherent states
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in the m-sheeted complex plane. The properties of these states
(overcompleteness, resolution of the identity etc.) are explicitly
considered. Using these states we extend the Bargmann (2] analytic
representation into a new formalism that we call Bargmann analytic
representation in the m-sheet& complex plane. Using this representation we
introduce new creation and annihilation operators am+,am which create and
annihilate clusters of m particles and show that the properties of our
coherent states with respect to them, are similar to the properties of the
ordinary (Glauber) coherent states with respect to the usual creation and
annihilation operators a+,a.

The above ideas are used in the description of m-particle clustering.
which is a generalisation of the concept of pairing. They could be used to
generalise two-photon states into m-photon states with even better
properties. Some work in this direction but from a different point of view
has already been presented (3, 4]

2. the m-gheete e
We consider the Riemann surface
R =C|z (1)
m m
vwhere C* is the punctured complex plane
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*
C =C - (o) (2)
and Znl is the discrete group of the integers modulo m. The punctured complex
*
plane C 1is the m-sheeted covering surface of the Riemann surface R -

The sheet number s(z) of a complex number z in C* is defined as

m Arg(z)
s(z) = IP |—mm— (3)
2x

where IP stands for the integer part of the number. s(z) takes integer
values from 0 tom - 1 (modulo m).

We also consider the harmonic oscillator Hilbert space H and express it
as

m-1
H = X Hl (4)
2=0

H! is an infinite-dimensional subspace spanned by the number eigenstates
H, - | Nm+ 2> ; N=0,1,2, ..... ) (5)
We call L) the projection operators on H

«@©
7= L | Mm+2><Nm+ 2|
N-0

Z Ty = 1 (6)
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We now introduce the states

1

z,m> = exp [- - |z|2n] ) zHN (N!)J‘2 | oN + s(z) > 7
2 N=0

where s(z) is the sheet number of z defined in equ.(3). It is clear that if
z belongs to the zero sheet the states lmN) should be used; 1if z belongs to
the first sheet the states |mN+1> should be used; etc. The state |z>

belongs to the Hilbert space Hs(z)' We refer to the states (7) as coherent

states on the m-sheeted complex plane. We can prove

)m

1
2m 2m *
"3 [z, 1™ + (22,7 (®

1
<zpiml zyim> = 6 (s(z). s(z)) exp |- — 2]

where § 1s the kronecker delta.
In order to give a resolution of the identity for these states we first

prove a resolution of the identity within the Hilbert space Hl:

[ |z;m> <z;m| dp (z) = =, 10)
s
2
dﬂm (Z) - *-1 !ll2 |z|2(m-1) d22 (11)
Sy is the 2-sheet and " is the projection operator (6). Summation over 2
gives the resolution of the identity:
[ lzim> <z;m| dpm(z) -1 (12)

c
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The states |z;m> with z in the sheet S,, form an overcomplete set within
the Hilbert space Hl'
3. tended tation on the m-sheeted com ane

Bargmann (2] introduced analytic representations in the complex plane
which are based on ordinary coherent states. In refs. (5] analytic
representations in the unit disc which are based on the SU(1,1) Perelomov
coherent states, have been studied. This formalism has been extended in
ref.[1] into analytic representations in the m-sheeted unit disc. In this
section we study an analogous extension from the Bargmann representation in
the complex plane into an analytic representation in the m-sheeted complex
plane.

We generalise the Bargmann representation by representing the arbitrary
(normalised) state |f> with the function

|t>-2fN|N>

1
2m * mN -3
f(z;m) = exp |- |z] <z ;m|f>~- J f z  (N!) (13)
[2 ] N=0 mN+s(z)

*
where z takes values in C and s(z) is the sheet number of z (equ.(3)). The
f(z;m) is analytic in the interior of each sheet and has discontinuities

across the cuts Cl'
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As an example we consider the number eigenstates IM = mN+£> where N, £
are the integer part and remainder of M divided by m, correspondingly. They
are represented by the function

£(z;m) - §(2,8(2)) N " (14)

The kronecker §(2,s(z)) ensures that this function is non-zero only in
the 2 sheet.

As a second example we consider the states |z°;m> of equ.(7) which are

represented by the function
1
*
f(z;m;z ) = exp [— |z|2n] <z ;m|z_;m> =
o 2 o

1
6(s(z);s(z°)) exp {- - |z°|2|l + (zzo)"1 (15)
2

We next consider the operators

-1 1-m
m Z

a - az (16)

a’ -z Qan

(ag: 25 ) =1 (18)

am+ | oN + £ > - 1) | m1) + 2> (19)
b

a, | N + 2> =N | m(N-1) + 2> (20)

It is seen that they act as creation and annihilation operator within
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each one of the Hilbert spaces H

2
The operator

am+ a - m-l zaz

a a | mN+2><N|aN+2> (21)

can be considered as a number operator within the Hilbert space Hl'

We also consider the operator

R-a'a-mata (22)

m m

R |mN+£> = 2 |mN+£> (23)
which we call "remainder operator” or “"number modulo m operator®”. Its
eigenstates are the number states and its eigenvalues the remainderg £ of the
division of the number of the state over m. The operator R commutes with the

+
operators a , a_ :
m m

(R, a ] - [R, a_ '] -0 (26)

Note that the operators am,am+ commute with the projection operators ", of
equ.(7):
[ 1 =(a', x,] =0 (25)
am’ "y m ' £
A consequence of that is that an "arbitrary” function of am,am+ leaves each

of the Hilbert spaces Hl invariant i{n the sense that when it acts on a state

which belongs in Hl it produces another state which also belongs in the same
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space.

We next consider the displacement operators with respect to the ‘n+"n

+ *
Dn(zo) - exp [z° a, -2z, am] (26)

They displace the operators am,am+ by a constant and they commute with

the operator R or equ. (22)

+

Dn(zo) a Dn (zo) -a - z, (27)
Dm(zo) an+ Dn+ (zo) - am+ - zo* (28)
[, (z,), Rl =0 (29)

We now act with the operators Dn(zo) on the number eigenstates |l> (0 =<
2 s m-1) and get the coherent states on the m-sheeted complex plane (7):

|z - (zo)ll/" ;m>=D (z) | 2> (30)

The subscript £ indicates that among the m roots, the one which belongs
to the sheet S‘ should be chosen. Equ.(30) can also be writen as

Jzim> = D ™ |s(z)> (31)
where |s(z)> is number eigenstate and s(z) the sheet number of z (equ.(3)).

Using equs.(27), (31) we prove that the |z;m> are eigenstates of a

a |z;m> - zmlz;m> (32)

It should be pointed out that operators similar to am+,an have been

considered in [6] and used in refs. [4, where the following states have been



studied

1 @
exp |- - Izl2 Y 2 (N!)-lt | > (33)
2 N=0

They are a subset of our coherent states assoclated with the Hilbert space HI
with £ = 0; or equivalently with the zero sheet of our m-sheeted complex

plane. It has been shown in [4] that the states (33) have very interesting

quantum statistical properties.

We consider the Hamiltonian

+ + *
H~Qa a+ra + 1 a =R+ H (34)
m m 1
H =0Qma + a +rats r* a (35)
1 m m m n
[R, H;}] =0 (36)

and express H as:

2
T + + T ITl
H= Dlll ~-—! |0 m a a Dm - —] + OR - (37)

We easily see that the eigenvectors and eigenvalues of H are:

T 72 4
Hp |- — |aN+2> = [Q(mN+2) - b, |- — | mN+ 2> (38)
im Om fm

The physical significance of this Hamiltonian lies in the fact that the
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operators am+,am create and annihilate clusters of m particles. Pairing of
particles plays a very important role in various contexts in Physics.
GCeneralisation from pairing into m-particle clustering can be described with
various Hamiltonians. The obvious choice is

H-na' a+r @)%+ " (39)
There are certain difficulties associated with this Hamiltonian [3] and in
any case it is useful to explore alternative models, especially if they are
based on some symmetry which can be exploited to handle these highly
non-linear terms. In ref. [1) a Hamiltonian associated with the SU(1,1)
group, which describes m-particle clustering has been studied. In this
section the Hamiltonian (34) which is associated with the Weyl group and
which also describes m-particle clustering, has been studied.
5. Discussion

Coherent states on the m-sheeted complex plane have been introduced in
equ. (7). The Hilbert space has been split into m subspaces (equ.(4)) and
operators am+, a which play the role of creation and annihilation operators
in each subspace, have been introduced. The am+, a are different from the

+
usual creation and annihilation operators a ,a. It has been shown that our

coherent states have the usual properties of coherent states with respect to
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the am+,am. They are eigenstates of a (equ. (32)); and they can be
expressed as the product of the displacement operator times the lowest state
(equ.(31)).

All these 1deas can be used for the description of m-particle
clustering. This is a generalisation of the concept of pairing which plays
an important role in areas like squeezing in quantum optics,
superconductivity, superfluidity, phase transistions etc. Consequently this
formalism might be used for generalisations in all these areas. A
Hamiltonian that describes m-particle clustering has been considered in
equ.(34) and its eigenvalues and eigenfunctions have been calculated.
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